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Figure 7. KNIME Workflow Discussion and Conclusion
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* Experimental datasets were curated for each parameter, ranging from
69 -1808 chemicals. The models were trained on 75-80% of the data,
and 20-25% of the chemicals were used as external test sets.

— In vitro activity, which can be expressed as lowest effective
concentration (LEC), half-maximal activity concentration (AC50),
activity concentration at cutoff (ACC), or other concentration metric
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clearance based on a published quantitative property-property
relationship (QPPR) model (Kirman et al. 2015).

* Figures 4-6 show that our models accurately predicted PK
parameters (R? ranged from 0.79 to 0.86 between the predicted and
experimental values for the external test sets). Where available, we
compared performance of our models to that of ADMET Predictor
software (Simulations Plus, Inc.), a proprietary software that uses
QSAR models to predict biochemical, biophysical, and

pharmacokinetic properties. Our models consistently performed

better.

tissue to plasma partition
coefficients.

A: PLiver; B: PKidney; C: PGut.
For PGut, only NICEATM model
results are presented, as an
analogous prediction was not
available from ADMET Predictor.

Wetmore et al. 2012. Toxicol Sci 125:157-174.
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» The workflow output is an EAD value, which can be compared to
user-provided in vivo lowest effective levels (LELS) or human
exposure values.

Predicted log Gut-Plasma

* The workflow provides values for both EAD_Adj, the daily equivalent
dose that results in free chemical concentrations in the blood
equivalent to corresponding ACCs, and EAD_Total, the daily equivalent
dose that results in total chemical concentrations in the blood
equivalent to corresponding ACCs.
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